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Abstract
We discuss a family of integrable systems on the sphere S2 with an additional
third-order integral in momenta. This family contains the Coryachev–
Chaplygin top, the Goryachev system, the system recently discovered by Dullin
and Matveev, and two new integrable systems. On the non-physical sphere with
zero radius all these systems are isomorphic to each other.

PACS numbers: 02.10.Yn, 02.30.Ik

1. Introduction

Let us consider a particle moving on the sphere S2 = {x ∈ R
3, |x| = a}. As coordinates on the

phase space T ∗S2 we choose entries of the vector x = (x1, x2, x3) and entries of the angular
momentum vector J = p × x = (J1, J2, J3), where Ji = ∑

εijkpjxk . The corresponding
Poisson brackets read

{Ji, Jj } = εijkJk, {Ji, xj } = εijkxk, {xi, xj } = 0, (1.1)

where εijk is the totally skew-symmetric tensor. The Casimir functions of the brackets (1.1)

A =
3∑

i=1

x2
i = a2, B =

3∑
i=1

xiJi = 0, (1.2)

are in the involution with any function on T ∗S2. So, for the Liouville integrability of the
corresponding equations of motion it is enough to find only one additional integral of motion,
which is functionally independent of the Hamiltonian H and the Casimir functions.

If the corresponding Hamilton function H has a natural form, then according to
Maupertuis’s principle, integrable system on T ∗S2 immediately gives a family of integrable
geodesic on S2. If the additional integral of this integrable system is polynomial in momenta,
integral of the geodesic are also polynomial of the same degree.
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In this note we discuss a family of integrable systems on T ∗S2 with a cubic additional
integral of motion. Among such systems we distinguish the Goryachev–Chaplygin top [1, 2]
with the following integrals of motion

H = J 2
1 + J 2

2 + 4J 2
3 + cx1, K = 2

(
J 2

1 + J 2
2

)
J3 − cx3J1, c ∈ R. (1.3)

In [2] Chaplygin found the separated variables

qj = J3 ±
√

J 2
1 + J 2

2 + J 2
3 , j = 1, 2, (1.4)

where dynamical equations are equal to

(−1)j (q1 − q2)q̇j = 2
√

P(qj )2 − a2c2q2
j , P (λ) = λ3 − λH + K. (1.5)

These equations are reduced to the Abel–Jacobi equations and, therefore, they are solved in
quadratures [2].

Using variables qj (1.4), integrals of motion (1.3) may be rewritten in the following form:

H = q2
1 + q1q2 + q2

2 + cx1, K = q1q2(q1 + q2) − cx3J1. (1.6)

In [3] Goryachev de facto substituted special generalizations of the variables qj (1.4) into
expressions similar to (1.6) in order to construct new integrable system with a cubic integral
of motion. In the next section we generalize this result.

2. A family of integrable systems on the sphere

Substituting canonical variables

qj = αJ3 ±
√

J 2
1 + J 2

2 + f (x3)J
2
3 + g(x3), {q1, q2} = 0, (2.1)

into the following ansatz for integrals of motion:

H = q2
1 + q1q2 + q2

2 + m(x3)x1,

K = q1q2(q1 + q2) − n(x3)J1 − �(x3)x1J3,
(2.2)

one gets

H = J 2
1 + J 2

2 + (3α2 + f (x3))J
2
3 + m(x3)x1 + g(x3) (2.3)

and

K = −2αJ3
(−α2J 2

3 + J 2
1 + J 2

2 + f (x3)J
2
3 + g(x3)

) − n(x3)J1 − �(x3)x1J3. (2.4)

Here α is an arbitrary numerical parameter, f, g,m, n and � are some functions of x3 and of
the single non-trivial Casimir a =

√
x2

1 + x2
2 + x2

3 (1.2).

Theorem 1. On the phase space T ∗S2 functions H (2.3) and K (2.4) are in the involution
with respect to the brackets (1.1) if and only if function n(x3) is a solution of the following
differential equation depending on α2

24α2 − 9 = 15
x3n

′ − n′′(a2 − x2
3

)
n

+
3x3n

′′ − n′′′(a2 − x2
3

)
n′

(
9 − nn′′

n′2

)

+ n

(
5x3n

′′′ − n′′′′(a2 − x2
3

)
+ 3n′′

n′2

)
. (2.5)
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All other functions in (2.3–2.4) are parametrized by n(x3)

g(x3) = d

n(x3)2
, m(x3) = −n′(x3)

α
, �(x3) = n(x3)n

′′(x3)

n′(x3)
,

f (x3) = 1 − 3α2 − α
3x3m(x3) − 2

(
a2 − x2

3

)
m′(x3)

n(x3)
+

x3�(x3) − (
a2 − x2

3

)
�′(x3)

n(x3)
.

(2.6)

Here d is arbitrary numerical parameter and z′ = ∂z/∂x3.

The proof is straightforward.
In this note we consider particular solutions of differential equation (2.5) only. Namely,

substituting the following ansatz:

n(x3) = c(x3 + e)β, c, e, β ∈ R, (2.7)

in (2.5) one gets a system of the algebraic equations on the three parameters α, β and e whereas
two other parameters c and d remain free.

Theorem 2. Differential equation (2.5) has five particular solutions in the form of (2.7) only:

1. ±α = β = 1, e = 0, n(x3) = cx3,

2. ±α = β = 1
3 , e = 0, n(x3) = cx

1/3
3 ,

3. ±α = β = 1
6 , e = a, n(x3) = c(x3 + a)1/6,

4. ±α = β = 1
2 , e ∈ R, n(x3) = c(x3 + e)1/2,

5. ±α = β = 1
4 , e = a, n(x3) = c(x3 + a)1/4.

(2.8)

The corresponding Hamilton functions (2.3) are equal to

H1 = J 2
1 + J 2

2 + 4J 2
3 + cx1 +

d

x2
3

,

H2 = J 2
1 + J 2

2 +
4

3
J 2

3 +
cx1

x
2/3
3

+
d

x
2/3
3

H3 = J 2
1 + J 2

2 +

(
7

12
+

x3

2(x3 + a)

)
J 2

3 +
cx1

(x3 + a)5/6
+

d

(x3 + a)1/3
,

H4 = J 2
1 + J 2

2 +

(
1 +

x3

x3 + e
− x2

3 − a2

4(x3 + e)2

)
J 2

3 +
cx1

(x3 + e)1/2
+

d

x3 + e
,

H5 = J 2
1 + J 2

2 +

(
13

16
+

3x3

8(x3 + a)

)
J 2

3 +
cx1

(x3 + a)3/4
+

d

(x3 + a)1/2
.

(2.9)

Transformation α → −α leads to the transformation of the free parameters (c, d) →
(−c,−d).

Explicit expressions for additional cubic integrals of motion K1, . . . , K5 may be obtained by
using definition (2.4) and equations (2.6) and (2.8).

The Hamilton function H1 describes the Goryachev–Chaplygin top [2]. The second
integrable system with Hamiltonian H2 was found by Goryachev [3]. The Hamilton function
H4 and the corresponding cubic integral of motion K4 was studied by Dullin and Matveev [4].
The third and fifth integrable systems with Hamiltonians H3 and H5 are new.

At present we do not know whether our systems in implicit or explicit forms (2.5)–(2.9)
overlap with the families of integrable geodesic flows on S2 considered by Selivanova [5] and
Kiyohara [6]. Recall that in [5, 6] all the geodesic flows are defined in implicit form only (see
also the discussion in [4]).
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3. The Lax matrices

In the fourth case (2.8) and (2.9) the parameter e is an additional free parameter which
introduces some differences between the systems. In order to study common properties of all
the five systems listed in theorem 2 we formally put e = 0 below.

Let us introduce the 2 × 2 Hermitian matrix

T (λ) =
(

A B

B∗ D

)
(λ),

where λ is a spectral parameter and

A(λ) = (λ − q1)(λ − q2) = λ2 − 2λαJ3 + (α2 − f (x3))J
2
3 − J 2

1 − J 2
2 − g(x3),

B(λ) = (x1 + ix2)m(x3)λ + J3(x1 + ix2)�(x3) + (J1 + iJ2)n(x3),

D(λ) = −n(x3)
2.

(3.1)

The trace of this matrix

t (λ) = A(λ) + D(λ) = λ2 − λHL + KL

gives rise to integrals of motion in the involution for the generalized Lagrange system

HL = 2αJ3, KL = (α2 − f (x3))J
2
3 − J 2

1 − J 2
2 − g(x3) − n(x3)

2.

The corresponding equations of motion may be rewritten in the form of the Lax triad

d

dt
T (λ) = [T (λ),M(λ)] + N(λ), tr N(λ) = 0.

In contrast with the Lax pair equations at N(λ) = 0, in the generic case the determinant
�(λ) = det T (λ) of the matrix T (λ) (3.1) is a dynamical function which does not commute
with integrals of motion:

β = 1 �(λ) = − a2

β2
λ2

(
∂n(x3)

∂x3

)2

+ d,

β = 1

3
�(λ) = − a2

β2
(λ + q1 + q2)

2

(
∂n(x3)

∂x3

)2

+ d,

β = 1

6
�(λ) = − a

β
(λ + q1 + q2)

2

(
∂n2(x3)

∂x3

)
+ d,

β = 1

2
�(λ) = − a2

β2
λ(λ + q1 + q2)

(
∂n(x3)

∂x3

)2

+ d,

β = 1

4
�(λ) = − a

β
λ(λ + q1 + q2)

(
∂n2(x3)

∂x3

)
+ d.

(3.2)

At ±α = β = 1 and n(x3) = cx3 matrix T (λ) (3.1) was constructed in [7]. In this case matrix
T (λ) defines representation of the Sklyanin algebra on the space T ∗S2 associated with the
symmetric Neumann system [7].

Theorem 3. If n(x3) is one of the particular solutions (2.8) of the differential equations (2.5)
then T (λ) (3.1) satisfies the following deformation of the Sklyanin algebra

{ 1
T (λ),

2
T (µ)} = [r(λ − µ),

1
T (λ)

2
T (µ)] + Z(λ,µ), (3.3)



On a family of integrable systems on S2 with a cubic integral of motion 925

where
1
T (λ) = T (λ) ⊗ I,

2
T (µ) = I ⊗ T (µ), I is a unit matrix and

r(λ − µ) = 2iα

λ − µ




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 . (3.4)

Deformation Z(λ,µ) is the Hermitian matrix

Z(λ,µ) =




0 u(µ) −u(λ) 0
u∗(µ) 0 w(λ,µ) 0
−u∗(λ) w∗(λ, µ) 0 0

0 0 0 0


 , (3.5)

which depends on the entries of T (λ) (3.1) only:

• at β = 1 we have u = w = 0;
• at β = 1

3 , 1
6 we have

u(µ) = −4iα

√
�(µ) − d

D(µ)

√
�(µ) − dB(λ) − √

�(λ) − dB(µ)

λ − µ
,

w(λ,µ) = −4iα
�(λ) − �(µ)

λ − µ
;

• at β = 1
2 , 1

4 we have

u(µ) = −2iα
�(µ) − d

µD(µ)

µB(λ) − λB(µ)

λ − µ
,

w(λ,µ) = −2iα
�(λ) − �(µ)

λ − µ
.

Here �(λ) = A(λ)�(λ) − B(λ)B∗(λ) is the determinant of the matrix T (λ) (3.1).

The proof is straightforward.
One of the main properties of the Sklyanin algebra is that for any numerical matricesK and

for some special dynamical matrices K coefficients of the trace of the matrix L (λ) = KT (λ)

give rise the commutative subalgebra

{trKT (λ), trKT (µ)} = 0,

(see [8] and references therein). All the generators of this subalgebra are linear polynomials
on coefficients of entries Tij (λ), which are interpreted as integrals of motion for integrable
system associated with matrices T (λ) and K [8].

Deformation of the Sklyanin algebra (3.3) and (3.5) has the same property.

Theorem 4. If dynamical matrix K has the form

K =
(

λ + 2αJ3 b1

c1 0

)
b1, c1 ∈ C,

then coefficients of the polynomial

P(λ) ≡ trKT (λ) = λ3 − λH + K (3.6)

are in the involution on T ∗S2.
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If b1 = c1 = 1/2 then the first coefficient H in P3(λ) (3.6) coincides with one of the
Hamiltonians H1, . . . , H5 (2.9) listed in theorem 2, whereas the second coefficients K is the
corresponding cubic integral K1, . . . , K5 (2.4). If b1 and c1 is arbitrary one gets the same
Hamiltonians up to the suitable rescaling of x and rotations

x → bUx, J → UJ, (3.7)

where b is numerical parameter and U is orthogonal constant matrix.
The equations of motion associated with the Hamilton function H (3.6) may be rewritten

as a Lax triad for the matrix L (λ) = KT (λ)

d

dt
L (λ) = [L (λ),M (λ)] + N (λ), tr N (λ) = 0.

Here matrices M and N are restored from the deformed algebra (3.3) and definition of
Hamiltonian (3.6) in just the same way as for the usual Sklyanin algebra [7].

At e �= 0 in the fourth case (2.8) and (2.9) we have more complicated deformation of the
Sklyanin algebra, which will be studied separately.

4. Isomorphism of the systems at a = 0

For all the considered systems (2.9) at a = 0 the additional term Z(λ,µ) in (3.3) is equal to
zero according to (3.2) and (3.5)

a = 0 	⇒ �(λ) = d 	⇒ Z(λ,µ) = 0.

In this case matrices T (λ) associated with five integrable systems (2.9) define five
representations of the Sklyanin algebra on the space T ∗S2. Of course, these representations
are related to each other by canonical transformations.

Theorem 5. At a = 0, i.e. on the non-physical sphere S2 with zero radius, integrable systems
listed in the theorem 2 are isomorphic to each other.

To prove this theorem we introduce the variables

pj = 1

2αi
ln B(qj )

= 1

2αi
ln(qj (x1 + ix2)m(x3) + J3(x1 + ix2)�(x3) + (J1 + iJ2)n(x3)). (4.1)

At a = 0 variables p1,2 and q1,2 are canonical Darboux variables according to (3.3)

{pi, qj } = δij , {pi, pj } = {qi, qj } = 0, i, j = 1, 2.

In order to construct canonical transformations which relate integrable systems with
Hamiltonians H1, . . . , H5 (2.9) we have to identify variables p1,2, q1,2 (2.1) and (4.1)
associated with the different functions n(x3) (2.8).

We could not lift these symplectic transformations to the Poisson maps. So, we cannot
assert that integrable systems (2.9) are isomorphic on the generic symplectic leaves (1.2).

The result of theorem 5 may be interpreted in the following way. At a = 0 on the special
symplectic leaf of the Lie algebra e(3) there exists a germ of single integrable system with
Hamiltonian H (1.3). Using canonical symplectic transformations one can get infinitely many
different forms of this integrable system. However, according to the theorem 2, these different
forms of the germ admit only a denumerable set of the continuation on the generic symplectic
leaves with the conservation of the integrability property. A similar observation for another
family of integrable systems on the sphere is discussed in [9].
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5. Summary

Using the separation of variables for the Goryachev–Chaplygin top we constructed a family
of integrable systems on the sphere with a cubic additional integral of motion. On the non-
physical sphere S2 with zero radius these systems are isomorphic to each other.

On this non-physical sphere at a = 0 the separated variables for all five systems
coincide with the separated variables for the Goryachev–Chaplygin top up to symplectic
transformations. It allows us to integrate equations of motion in quadratures. On the usual
sphere at a �= 0 the separated variables are unknown. We suppose that these variables may be
constructed using the proposed deformation of the Sklyanin algebra.
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